Bayesian inference for data assimilation using Least-Squares Finite Element methods

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Inference for Data Assimilation using Least-Squares Finite Element Methods

It has recently been observed that Least-Squares Finite Element methods (LSFEMs) can be used to assimilate experimental data into approximations of PDEs in a natural way, as shown by Heyes et al. in the case of incompressible Navier-Stokes flow [1]. The approach was shown to be effective without regularization terms, and can handle substantial noise in the experimental data without filtering. O...

متن کامل

Least-Squares Finite Element Methods

Least-squares finite element methods are an attractive class of methods for the numerical solution of partial differential equations. They are motivated by the desire to recover, in general settings, the advantageous features of Rayleigh–Ritz methods such as the avoidance of discrete compatibility conditions and the production of symmetric and positive definite discrete systems. The methods are...

متن کامل

Finite Element Methods of Least-Squares Type

We consider the application of least-squares variational principles to the numerical solution of partial differential equations. Our main focus is on the development of least-squares finite element methods for elliptic boundary value problems arising in fields such as fluid flows, linear elasticity, and convection-diffusion. For many of these problems, least-squares principles offer numerous th...

متن کامل

Multilevel Boundary Functionals for Least-squares Mixed Finite Element Methods

For least-squares mixed nite element methods for the rst-order system formulation of second-order elliptic problems, a technique for the weak enforcement of boundary conditions is presented. This approach is based on least-squares boundary functionals which are equivalent to the H ?1=2 and H 1=2 norms on the trace spaces of lowest-order Raviart-Thomas elements for the ux and standard continuous...

متن کامل

Least-squares Finite Element Methods for First-order Elliptic Systems

Least-squares principles use artificial " energy " functionals to provide a Rayleigh-Ritz-like setting for the finite element method. These function-als are defined in terms of PDE's residuals and are not unique. We show that viable methods result from reconciliation of a mathematical setting dictated by the norm-equivalence of least-squares functionals with practicality constraints dictated by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IOP Conference Series: Materials Science and Engineering

سال: 2010

ISSN: 1757-899X

DOI: 10.1088/1757-899x/10/1/012224